www射-国产免费一级-欧美福利-亚洲成人福利-成人一区在线观看-亚州成人

Global EditionASIA 中文雙語Fran?ais
World
Home / World / Newsmakers

Study finds clues to living a stronger, longer life

Xinhua | Updated: 2019-01-03 09:36
Share
Share - WeChat
[Photo provided to China Daily]

CHICAGO - Researchers from the University of Michigan (UM) Life Sciences Institute have uncovered a cause of declining motor function and increased frailty in tiny aging worms, and identified a molecule that can be targeted to improve motor function.

As humans and animals age, their motor functions progressively deteriorate. Millimeter-long roundworms called nematodes exhibit aging patterns remarkably similar to those of other animals, and they only live about three weeks, making them an ideal model system for studying aging.

To better understand how the interactions between cells changed as worms aged, the researchers investigated the junctions where motor neurons communicate with muscle tissue.

They identified a molecule called SLO-1, namely slowpoke potassium channel family member 1, that acts as a regulator for these communications. The molecule dampens neurons' activity, slowing down the signals from neurons to muscle tissue and reducing motor function.

The researchers manipulated SLO-1, first using genetic tools and then using a drug called paxilline. In both cases, they observed two major effects in the roundworms: not only did they maintain better motor function later in life, they also lived longer than normal roundworms.

"It's not necessarily ideal to have a longer lifespan without improvements in health or strength," said Shawn Xu, a professor of molecular and integrative physiology at the UM Medical School. "But we found that the interventions improved both parameters-these worms are healthier and they live longer."

More surprisingly, the timing of the interventions drastically changed the effects on both motor function and lifespan. When SLO-1 was manipulated early in the worms' life, it had no effect on lifespan and in fact had a detrimental effect on motor function in young worms. But when the activity of SLO-1 was blocked in mid-adulthood, both motor function and lifespan improved.

As the SLO-1 channel is preserved across many species, the researchers hope these findings will encourage others to examine its role in aging in other model organisms.

In the next step, the researchers hope to determine the importance of the SLO-1 channel in early development in the worms, and to better understand the mechanisms through which it affects lifespan.

The findings were published on Wednesday in Science Advances.

Most Viewed in 24 Hours
Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
主站蜘蛛池模板: 久久精品成人免费网站 | 亚洲最大网站在线 | 欧美精品a毛片免费观看 | 久久欧美精品 | 91久久视频| 男人天堂怡红院 | 亚洲日本一区二区三区在线 | 欧美精品一区二区三区四区 | 成人禁在线观看午夜亚洲 | 黄网在线免费 | 国产成人综合网在线播放 | 亚洲欧美日本视频 | 国产成人ay手机在线观看 | 欧美巨大精品videos | 成人偷拍视频 | 国产成人精品视频 | 69视频成人 | 美国美女一级毛片免费全 | 欧美日本韩国一区 | 亚洲精品免费在线 | 在线久草视频 | 国产一区二区三区四区在线观看 | 模特精品一区二区三区 | 国产精品久久久久久久人热 | 成人影院vs一区二区 | 亚洲第一在线 | 亚洲久草视频 | 一个人看的免费观看日本视频www | 国产成人精品天堂 | 国产精品综合久成人 | 视频在线观看一区 | 成人免费久久精品国产片久久影院 | 一本不卡 | 久久国产一片免费观看 | 日韩欧美一及在线播放 | 日日爽夜夜操 | 色在线看 | 成人五级毛片免费播放 | 九九九国产 | 精品国产日韩久久亚洲 | 在线观看免费视频网站色 |