www射-国产免费一级-欧美福利-亚洲成人福利-成人一区在线观看-亚州成人

US EUROPE AFRICA ASIA 中文
China / Innovation

Scientists ponder exoskeletons

By CHENG YINGQI (China Daily) Updated: 2015-08-24 07:25

Iron Man suit in movie may look cooler than real-life version

Scientists ponder exoskeletons

Two researchers at the PLA Information Engineering University test how to control robots with the "mind".[Photo by SHEN XIANG/CHINA DAILY]

In the US movie Iron Man, businessman Tony Stark developed a robotic suit that gave him inexhaustible power to fight the bad guys.

The reality of the suit, however, was that it was so heavy and unwieldy that even actor Don Cheadle in Iron Man 3 complained that it was "not really cool at all" to play a superhero in the suit.

Now Chinese scientists are developing a flexible and controllable exoskeleton that moves as nimbly as a mind controls its limbs.

Scientists from the Institute of Advanced Manufacturing Technology in Changzhou, Jiangsu province, recently completed an exoskeleton that can help people climb mountains with 30 kilograms of gear or punch through a wall without breaking a sweat.

The exoskeleton, which has neither the bright red color nor the cool appearance of the Iron Man suit, looks more like an iron skeleton with a bevy of sensors and electric wires. When worn, its sensors catch every move's neuromuscular signals and respond with the right action.

"The potential application of the exoskeleton is wide," said Wang Yucheng, an assistant researcher at the Institute of Advanced Manufacturing Technology. The institute, a unit of the Hefei Institutes of Physical Science at the Chinese Academy of Sciences, focuses on robotics and intelligent manufacturing.

At a Brain-Inspired Intelligence Forum in June, Tan Tieniu, deputy secretary-general of the Chinese Academy of Sciences, said, "Artificial intelligence will bring us into the second machine age-an age featuring exponential growth, digitization and combined innovation."

One of the uses of such an exoskeleton is to increase the fighting capacity of an individual soldier. For example, the Robotics & Human Engineering Laboratory at the University of California, Berkeley, in the United States has been researching exoskeletons since early 2000, and has developed a range of products for military use. The Human Universal Load Carrier can carry up to 200 pounds while the wearer feels no load, for example, and the ExoHiker can enable the wearer to carry a 150 pound load and walk for 21 hours.

Besides military uses, superman abilities also are desired in emergency situations such as fire fighting and earthquake rescues. "For example, if a firefighter runs into a burning building with an exoskeleton, he or she can carry out two or more people who passed out due to the smoke, instead of carrying out one and heading into the danger again," Wang said.

Exoskeletons also can help some disabled people walk or make movements, such as kicking a ball. At the opening ceremony of the 2014 FIFA World Cup in Brazil, 29-year-old paraplegic Juliano Pinto kicked a soccer ball to start the games with the help of a mind-controlled exoskeleton.

"The mind-controlled exoskeleton, with an electrode cap like that used on the World Cup opening ceremony, reacts faster than the neuromuscular-sensation exoskeletons like ours," Wang said.

When a person wants to make a certain movement, the electrode cap reads the change of his or her brain wave and makes the movement almost simultaneously. The neuromuscular sensors, on the other hand, can only feel the body's movement when the action starts, so they react slower.

Scientists at the Chinese Academy of Sciences are cooperating with experts from the National University of Defense Technology to develop mind-control exoskeletons. The technology has been tried on intelligent cars that can start, stop, make turns and drive at 5 to 10 km/h under mind control.

Mind-controlled machines are nothing new in the neuroscience field. Research on brain-computer interfaces began at the University of California, Los Angeles, in the 1970s. In 1998, researchers at Emory University in Atlanta implanted a device on a patient with locked-in syndrome-a condition in which only the eyes can move-that helped him move a computer cursor.

More recently, researchers from Brown University and the University of Pittsburgh Medical Center succeeded in enabling brain-controlled robotic prosthetic limbs on paralyzed patients in 2012.

As successes mount, governments are pouring more money into the technology.

In April 2013, US President Barack Obama announced the BRAIN Initiative, or Brain Research through Advancing Innovative Neurotechnologies, with $100 million budget to map the human brain. The European Union's Horizon 2020, the biggest EU research and innovation program, also targets brain research.

China included the brain and cognitive science as one of the eight research fields in the national long-term science and technology development plan through 2020. And experts had disclosed earlier this year that the Chinese government would publish the country's brain project shortly.

"Research into brain-inspired intelligence has been included in the development strategies of major developed countries. China should boost the development of AI to seize the commanding heights of the new round of technological revolution," Tan said.

While people can use their minds to control some external devices, machines do not yet understand human thoughts, said Yang Zhi, a researcher on cognitive neuroscience at the Institute of Psychology, Chinese Academy of Science.

"Some of the mind-control technologies are actually using the reactions of people's brain activity-such as neuromuscular signals and movement of eyeballs-to control the external devices, while we still understand little about what kind of thoughts people may hold in their mind when they have a certain kind of brain activity and the corresponded reactions," Yang said.

Yang and his team have been studying that relation by analyzing a database that contains more than 5,000 brain magnetic resonance imaging scans relevant to people's emotions and thoughts.

Recently the team found that activities of certain brain regions are related to people's answers to yes-or-no questions.

"For example, if I ask you if one minute equals 100 seconds-apparently the answer is no-a certain region in your brain will be active, so that I will learn what your real idea is, no matter what you say to me," Yang said.

The technology has been used to test the brain activity of patients in a vegetative state to detect their responses to questions like: Can you feel the pain?

Connecting thought to corresponding brain activity is key to expanding the application of mind control, Yang said.

Highlights
Hot Topics
...
主站蜘蛛池模板: 无套内谢孕妇毛片免费看 | 色老头一级毛片 | 免费在线观看的毛片 | 萌白酱香蕉白丝护士服喷浆 | 日本不卡免费高清一级视频 | 免费特黄级夫费生活片 | 亚洲理论片在线中文字幕 | 国产在线观看成人 | 亚洲国产欧美在线不卡中文 | 91亚洲精品一区二区福利 | 成人香蕉视频 | 日本人成在线视频免费播放 | 色偷偷成人网免费视频男人的天堂 | 国产精品莉莉欧美自在线线 | 亚洲 欧美 视频 | 国产成人精品男人免费 | 久久久一区二区三区 | 高清国产亚洲va精品 | 日本久久久久久久 | 在线视频一区二区三区 | 欧美三级在线视频 | 91香蕉国产观看免费人人 | 香蕉国产人午夜视频在线观看 | 欧美成人3d动漫专区 | 日韩亚洲欧美理论片 | 国产二区精品 | 失禁h啪肉尿出来高h | 一级做a爱过程免费视 | 成人手机视频在线观看 | 亚洲天堂免费观看 | 亚洲成人免费在线视频 | 国产精品怡红院在线观看 | 国内亚州视频在线观看 | 久久性妇女精品免费 | 日韩欧美一区二区三区久久 | 亚洲另类视频在线观看 | 久久综合精品不卡一区二区 | 99在线精品视频免费观里 | 免费区欧美一级毛片精品 | 久久精品国产欧美日韩99热 | 日韩一区二区免费看 |