www射-国产免费一级-欧美福利-亚洲成人福利-成人一区在线观看-亚州成人

USEUROPEAFRICAASIA 中文雙語Fran?ais
Lifestyle
Home / Lifestyle / Health

Researchers zero in on few proteins as cancer drug target

Xinhua | Updated: 2016-07-29 11:33

Researchers with University of California, Berkeley, have found a promising new drug target within the pathway that controls the production of a cancer cell's thousands of proteins and it appears to control production of only a few percent of the proteins critical to regulating the growth and proliferation of cells.

The target, according to a study published online Wednesday and in the Aug. 4 print issue of the British journal Nature, is a protein that binds to messenger RNA, or mRNA, and helps get it started along the production line that ends in a fully assembled protein. A drug blocking this binding protein could shut off translation of only the growth-promoting proteins and not other life-critical proteins inside the cell.

As mRNA holds the cell's blueprint for making protein, "if cancer cells are making too much mRNA, you could shut them down by preventing them from using that mRNA to make protein," said Jamie Cate, a UC Berkeley professor of molecular and cell biology and of chemistry and leader of the study. "Because this binding protein is not used for general protein production - not every mRNA uses this - you may be able to get a more specific anti-cancer effect by targeting that alone."

To researchers' surprise, the protein is part of a larger assembly of proteins called eukaryotic initiation factor 3, or eIF3, that has been known and studied for decades. "No one suspected its undercover role in the cell," said first author Amy Lee, a former UC Berkeley American Cancer Society postdoctoral fellow and now an assistant professor at Brandeis University. "This may be because eIF3's ability to selectively control mRNA translation is turned on only when it binds to the set of specialized mRNAs."

Cancer is characterized by uncontrolled cell growth, with the protein production machinery goes into overdrive to provide the building materials and control systems for new cells. Hence, biologists have studied the proteins that control how genes are transcribed into mRNA and how the mRNA is read and translated into a functioning protein. It was found more than 40 years ago that a so-called initiation protein must bind to a chemical handle on the end of each mRNA to start it through the protein manufacturing plant, the ribosome. Until now, this initiation protein was thought to be eukaryotic initiation factor 4E, or eIF4E.

Earlier this year, Cate and Lee discovered that for a certain specialized subset of mRNAs - most of which have been linked somehow to cancer - initiation is triggered by a different protein in eIF3. Before, that protein was thought to be just one of a dozen or so general initiation factors required for mRNA translation. Instead, they discovered that eIF3, an assembly of 13 separate proteins, binds to unique three-dimensional structures found only in this special subset of mRNAs.

"What we found is that another protein, hiding in plain sight for over four decades, can also bind the chemical handle on the end of mRNAs to promote translation," Cate said. "It's a component of eIF3 - a protein called eIF3d - which has never before been connected to binding the handle." Subsequent X-ray crystallography of eIF3d revealed the structural rearrangements that must occur when eIF3 binds to the mRNA three-dimensional structures and which open up the secret compartment.

Binding between eIF3 and these mRNAs opens up a pocket in eIF3 that then latches onto the end-cap of mRNA to trigger the protein production, or "translation," process. "To me, it's like finding a secret lever that opens a hidden drawer in an old-time desk," Cate said. "The desk has been around over one and half billion years and many have studied it for decades, but we figured out how to trigger the opening."
The research hints that this secret lever, which triggers translation of only a special subset of mRNAs - perhaps only 500 out of some 10,000 mRNAs produced by a cell - will be found to play a critical role in other diseases besides cancer, as well as in plants and animals.

Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
主站蜘蛛池模板: 国产三级黄色 | 久草视频免费在线播放 | 国产亚洲精品网站 | 欧美高清色视频在线播放 | 成人怡红院视频在线观看 | 久揄揄鲁一二三四区高清在线 | 99国产精品欧美久久久久久影院 | 国产v片成人影院在线观看 国产v片在线播放免费观 | 老司机精品福利视频 | 美女很黄很黄免费的 | 欧美成成人免费 | 萌白酱国产一区 | 亚洲视频在线播放 | 伊人久久影视 | 91青草久久久久久清纯 | 免费一区区三区四区 | 国产午夜亚洲精品国产 | 精品在线一区 | 欧美日韩一日韩一线不卡 | 明星国产欧美日韩在线观看 | aaaaaa精品视频在线观看 | 欧美a大片欧美片 | 欧美日韩免费一区二区在线观看 | 成人a级高清视频在线观看 成人a毛片 | 久久91精品国产91久久 | 国产午夜精品久久久久免费视 | 男女精品视频 | 日本三级香港三级少妇 | 亚洲孕交 | 国产成人小视频在线观看 | 精品国产呦系列在线看 | 男女免费观看在线爽爽爽视频 | 欧美日韩一区二区三区视频 | 久久毛片网 | 未成人做爰视频www 窝窝午夜精品一区二区 | 国产精品久久久免费视频 | 亚洲一成人毛片 | 国产一级一片免费播放 | 日本国产精品 | 久久精品中文字幕有码日本 | 色综合久久88色综合天天提莫 |